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SUMMARY

In the near future, large ram-air parachutes are expected to provide the capability of delivering 21 ton payloads
from altitudes as high as 25,000 ft. In development and test and evaluation of these parachutes the size of the
parachute needed and the deployment stages involved make high-performance computing (HPC) simulations a
desirable alternative to costly airdrop tests. Although computational simulations based on realistic, 3D, time-
dependent models will continue to be a major computational challenge, advanced finite element simulation
techniques recently developed for this purpose and the execution of these techniques on HPC platforms are
significant steps in the direction to meet this challenge. In this paper, two approaches for analysis of the inflation
and gliding of ram-air parachutes are presented. In one of the approaches the point mass flight mechanics
equations are solved with the time-varying drag and lift areas obtained from empirical data. This approach is
limited to parachutes with similar configurations to those for which data are available. The other approach is 3D
finite element computations based on the Navier—Stokes equations governing the airflow around the parachute
canopy and Newton’s law of motion governing the 3D dynamics of the canopy, with the forces acting on the
canopy calculated from the simulated flow field. At the earlier stages of canopy inflation the parachute is
modelled as an expanding box, whereas at the later stages, as it expands, the box transforms to a parafoil and
glides. These finite element computations are carried out on the massively parallel supercomputers CRAY T3D
and Thinking Machines CM-5, typically with millions of coupled, non-linear finite element equations solved
simultaneously at every time step or pseudo-time step of the simul&@h997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Small-scale gliding (ram-air) parachutes, commonly used by the sports parachute community as well
as by the military for personnel drop, have reached a satisfactory level of reliability, aerodynamic
efficiency and controllability. Furthermore, larger-size versions of these parachutes are being
increasingly used for the recovery of large payloadsliding parachutes coupled with automatic
onboard guidance offer superior controllability and substantial wind penetration when compared with
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1354 V. KALRO ETAL.

round parachutes. Since their introduction in the early 1960s, gliding parahutes have been
redesignedandrefined by the sportscommunity. Thesepersonnelitpe parachuésaresmall but have
lower wing loadng thanthoserequired for large payloads.

Future military airdrops will requirethe deploynent of high-altitude delivery sysemscapableof
deliveling up to 21 tons from 25,000ft abovegroundlevd with increagd accuracyand reduced
impactvelocity. Gliding parachutesvhich are at least an orderof magnitude largerandwith a wing
loadng threetimeslarger than existing parachugs are currenty beingdeveloped

The deploynent and control of suchlarge parachués posemany challengirg technicalproblems.
In thedesignof any parachutesystemit is importantto predictopening forcesfor choice of materids.
Only a limited databasds available for large gliding parachugs; therebre methodsfor inflation
analsis basedon first principles may be usetil in design.

In this paper,two approachefor openingforce analysisare presenéd? Oneof the approacheis
an extensbn of the classicalPflanzmethod?® Herethe lift anddragarea areassumedo vary with
time and the point mas flight mechants equatios are solved as a function of time to yield the
openig forces.This methodrequires emgrical datain orderto modelthe tempoal evolution of lift
anddrag,soits predicive capalilities arerestrictedto parahutessimilar to those for which dataare
available.

The secondapprach focuses on advancedfinite elementflow simulaion techniqies to use
realistic, 3D computer modelsrepresentingthe parachug¢ sysem and its deploynent stages.The
aeralynamics of ram-air parachutes involves a large number of comple« phenomena The
depbyment, extensionand evolution to the gliding stageinvolve rapidly changinggeonetries,
unstadyandturbulentflow behavour and non-linearinteractions betwee the parachute strucure,
aeralynamicforcesand the payload.Even the gliding stage involves deformations of the canopy
changs in the orientation of the parachuteandchangs in relative motion betwee the canopyand
the payload.All thes behavious require3D simulationtechniqiescapalbe of handlingtime-varying
computationaldomainswith formulationswhich arerobug and accuratelmplementatbonson HPC
platforms with suffident computationalspeedand memoryare necesary.

At this phaseof the simulationsthe time-variationof the georretry of the canopyis assumedo be
given, approximaéd using the initial and final configuiations and dimensons of the canopy
Howeve, the dynamicsof the canopy i.e. its transhtional and rotational motion, still needsto be
detemined as part of the overdl solution. This motion depend on the weight and motion of the
payloadandalsoon the aerodynarit forcesgeneratedy the unsteadyflow field. The airflow around
the parachug canopyis governedby the 3D Navier—Stokesequatias of incomprestble flow with
time-dependenspatal domans. The 3D dynamicsof the canopyis governedby Newton’s law of
motion, with the forcesacting on the canopycalculatedfrom the simulatedflow field. At the initial
stage of canopyinflation the parachutés moddled asa falling, expandhg box, whereasat the later
stegesthe box transbrmsto an expandhng, gliding parafoil. It is importantto notethatto accuragly
resdve theflow arourd suchcomplex 3D geometrées, it is essatial to usevery refined computaional
grids leading to very large systens of non-linear equatons. The avalability of advaned HPC
platforms and efficient implementatbn techniquesmakesthes computationsfeasble.”®

To handk the time-vaiiant domainsencounieredin simulafons of parachutesysems,we emgdoy
the deforrmble-srmtial-domah/stabiIized-spacetime (DSD/SST)finite elemant formulation In this
formulationthefinite elementinterpolation polynomialsarefunctionsof both spaceandtime andthe
stabilized variatioral formulation of the problemis written over the associted space—tine doman.
This methodwasintroduced by Tezduya et al.®*°to solveincompessibleflow problens involving
free surfaces,two-liquid interfacesand fluid—gructure and fluid—paricle interections. Later, similar
formulationswere developedor compresible gasflows'* and compresible liquid flows?
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SIMULATION OF LARGE RAM-AIR PARACHUTES 1355

In this paperwe discussthe steadyglide aeraynamics and inflation aerodynants of ram-ar
pardoils. The computationsrepoted are performed on the Thinking Machines CM-5 and CRAY
T3D massivey pardlel computes. On the CM-5 we usean SIMD or dataparallelimplementation'®
andon the T3D we usea messaggassingparadigmbasedon PVM.**

In thesecomputations,updatng the finite elemant meshas the spatialdomainchangs its shape
with time beconesa majorissue.Thereareseveralways of managng this; the detdled descriptian of
thew apprachesogeaherwith their advanagesanddisadvanagescanbe foundin Referencelbs. In
our studiesthe motion of eachfinite elementgrid pointis presribedexplicitly. This is accompished
with no remesling (i.e. without geneating a new setof nodesandelemants). With this apprachthe
connetivity of the meshremainsthe same throughait the simulation. As a result, both the mesh
geneation and parallelization set-upcostsare reducedto a minimum. This is desiralte for pradical
simulationswith hundredsof time steps.

The orgarnization of this paperis asfollows. The govemning equatioms arereviewed in Section2.
The stabilizedfinite element formulation is preentedin Section3. In Section4 we preentthe mesh
moving schene usedin our simulaion of the inflation stage.Parallelimplementation aspectsare
briefly coveredin Section5. The steadyglide andinflation simulationscomprise Section6. Theflight
medanicssimulationsare preentedin Section7.

2. GOVERNING EQUATIONS

Let Q CR= and(0, T) bethespatialandtemporl domans resgectively, whereng, is the numberof
spacedimensgons,andlet E denotethe boundaryof Q The subscmpt t impliesthetime depenénce
of the spatialdomain. The spatal and temporalcoordindes are denotedby x :(x,y,z) EQ and
t € (0, T). The governingequaions for the flow field computdions are the Navier—Sbkesequatons
of incompresible flows,

p@J-I-u‘Vu +f)—V'O':0 on €, (1)
Veu=o0 onQ, (2)

where pis the (constat) densityandu is the velocity vector.Heref is the external force consising of
gravity. For the Newtonan fluids under consideation the stresstensa for a fluid with dynarmic
viscosity [tis definedas

o(u,p) =—p! +21€u), 3)
where p is the medanicalpressureand E(u) is the stran rate tensorgiven by
€u) =5 [Mu +(W)']. @)
Both Dirichlet- and Neumann-typeboundary conditionsare accounte for, representedas
u=g on (17)g, n+o=h on(l)), ()

where (I}), and (I;), are complementarysubses of the boundaryI';. The initial condtion on the
velocity is specifed as

u(x,0) =u, on$), (6)

where u, is divergence-fre.
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1356 V. KALRO ETAL.

The parafoil is treatd as a solid body with known geometic time variation The NavierStokes
equaions are coupled togethe with Newton's laws of motion for the parafoil sysem. Purely
transhtional motion is consideed. Theseequatias are

F+w =(/g)a, @)

where F is theaeralynamicforce acting on the pardoil andW is the gravitationa force acing on the
pardoil /payloadsystem Here a is the linear accderation of the mas centreof the pardoil /payload
sysem.

3. DEFORMING SPATIAL DOMAIN/STABILIZED SPACE-TIME (DSD/SST)
FORMULATION

In orderto constuct the finite elemant function spacedor the space—tine method,we partition the
time interval (0, T) into subintervas /,, :(tn,tn+1), wheret, andz,; belongto anordeed seriesof
time levels0 =¢, <t; <--- <ty =T. Let Q =Q andl, =I, . We definethe spacetime slab
0, asthedomainenclbsedby thesurfaceth,QH_1 andP,, where P, is the surfacedescrited by the
bourdary I} ast travesesl,. As is the casewith I, the surface P, is decomposd into (P,,)g and
(Pn)h with respecto thetype of bounday condition(Dirichlet or Neumann)beingimposedForeach
spacetime slabwe definethe correspadingfinite element functionspace{%%),, (¥%),, (%), and
(Wp),, Over the elementdomainthis spaceis formedby usirg first-orderpolynomils in spaceand
time. Globally the interpolation functions are continuais in spacebut discontnuousin time.

The stabilized spacetime formulaton for deforming domainsis then written as follows: given

")y, find u" €(S}), andp” €(F%), suchthat W' €(¥7), andVg" €(V7),
JQ, wh e p(a%h +u" - W —i—f) dQ—i—J ew ):o(", u")dQ —|—J ¢"V+utdQ
O, O,
30 [ prena) ) ko437 [ OV-wipV-udo
+ JQ )+ AW~ ] Q= j W e hiap. ®)

This processs appied sequatially to all thespacetimeslabsQ,, 0,, ..., Oy—;. In thevariatioral
formulationsgiven by equatia (8), the following notatim is used:

L(w,q) =p<a§ +u - Wv) +Vg =24V - €lw), ©)

() =limut, £, (0)

JQ" (..)d0 = I JQ,(...)int, (11)

Jpﬂ (..)dP = ﬁ jl_“(...)drdt. (12)
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SIMULATION OF LARGE RAM-AIR PARACHUTES 1357

The computationsstat with

) =u,. (13)

Remaks

1. In thevariatioral formulaion givenby equatio (8), thefirst threetermsandtheright-handside
constitutethe Galerkin formulation of the problem

2. The first seriesof element-l@el integralsin equation (8) consiss of the leastsquareserms
basedon the momentumequatia. Here T is definedas

1/2

whereh is the elementlength and v'’=/p.

3. The seconl seriesof element-lewl integralsis addedto the formulation for numertal stability
at high Reynolls numbers.Thesearethe least squaestermsbasedon the continuity equaton.
The coeficient 0 is definedas

h
=3 Ik, (15)
where

L Re,/3, Re, <3,
11, Re, >3

andRe, is the cell Reynoldsnumber.

4. Both stabilization termsare weightedresiduds and therebre maintan the consisency of the
formulation

5. Thesixthtermenforcesweakly, the continuity of thevelocity field acrosghe space—tire slabs.

4. MESH MOVING SCHEMES

In our finite elemant computdions we conster two categoriesof meshmoving schenes: autanatic
schenesand specialschenes.

In autamatic schemesthe mesh disgacenents are prescribedon the boundaies and the
dispacemens in the interior are determired by solving the equatias of elasticity for the doman.*®
This schemds very geneanl and partcularly suitabk for unstructired mesheshowever it involves
the addtional cost of solving for the node displa@ments.Furthernore, when the meshbecomes
excesively distorted remeshingneedsto be undertalen. This involves generaing a new meshand
projectingthe solution from the old meshto the new mesh.Projectionandmeshgenerabn aretime-
consuning and posebottlenecls in the parallelimplementation

In specialmesh-mowving schemeswhich arenormaly designedor specificproblens, the motion
of eachnodeis prescribedexplicitly. In our computdions we utilize sucha schemetogeher with a
specally despned algebraic mesh generabr. In its initial stateprior to inflation the parafoil is
assuned to have the shapeof a box. In its final stae it is fully inflated. The med connedivity
betwea the two stateseman unchamged.The time for inflation is estimatedrom dropted data.The
inflation procesds modelledasa smoothtransfornation betwea the two states As a resultof this,
the meshgeneator is usedto genera¢ meshescorrespading to the two end statesonly, and at a
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1358 V. KALRO ETAL.

given instant during inflation the meshis interpolated from thesetwo staes with no need for
remeslng. At this time the pitching motion of the pardoil is constraned.

It is importantto note that the true deformation history would come out of the solution of a
complex fluid—gructureinteraction problem which we plan to consderin the future.

5. PARALLEL IMPLEMENTATION

We briefly descrile herethe pardlel implementationof thefinite element algarithmsonthe Thinking
Machines CM-5 and CRAY T3D supercorputers.

The finite element formulations descrited in earlier sectians give rise to very large sysems of
coupkdnon-linearequatisnswhich requirethe useof iteraive straegieswith updatetechniquessuch
as GMRES'® for their soluion. To further redu@ the memoy requiremats, we use matrix-free
iterations and thus eliminate the needto storeelementlevel matrices.

The bulk of the computing costis taken up by two tasks.

1. Compusation of element-leel quantities.

2. Comnunication of data acrcss processorswhile forming the global equaion systens. This
involves the data transér modes Gather (global/node—>|0cal/element) and Scater
(global/node<—ocal/element).

Of thesetwo, the first taskis fully pardlel in the sensethat all operationsfor eachelemeant are
entirdy local to aprocessarThe secoml step canbe abotieneckandthuscarefulconsideation hasto
be given to the use and distribution of data structurs to maximize locality*”*® and minimize
communicdion.

Onthe CM-5 we usea data-paallel progmmmingparadigm The taskof synchpnizing processing
nodesis internal to the machine. The meshis partitionedandcommunicaion tracesarecomputa and
storedthrough calls to routinesin the Comection Machine Scientific Software Library (CMSSL)
The interestedreacer is referredto Reference 7 and 19 for further detals.

On the T3D we usea messaggassingparadigmbuilt uponthe CRAY extensim of the Paralkl
Virtual Machine (PVM) software. Here synchpnization betweenprocessa is realized explicitly
throughPVM barries placedaccordngly in the code.Gatherandscater operdionsareperformedby
routines programmel to offer the samefunctiorality availableon the CM-5.

6. FINITE ELEMENT SIMULATIONS
Stealy statesimulationsat Re =107

All the parafoil simulationsreportal in this Sectionare carriedout on the CRAY T3D massvely
pardlel supercorputer.The aerodyamiccharaceristicsof a pardoil arethe crucial quantities which
detemine its performane. We havecarried out steadystatesimulationsat variousanglesof attak
(.

The meshfor the pardoil, with a Clark-Y cross-gectionwith a roundel leadingedge,consiss of
291,437 nodesand 279,888hexahelral elements. The aspectratio of the pardoil is 3-0 andtheratio
of line lengthto span0-6. The x-axis is in the chordvise direction and the y-axis along the span.
Boundarycondtions conskt of no-slip condtionsonthe pardoil surface specificaion of thevelocity
at the inflow bounday, zero shearstressand zero normal velocities at the side boundaies and
tracion-freecondtionsat the outflow bounday. In these simulations,b refersto the parafoil spanand
c to the chordlengh.
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SIMULATION OF LARGE RAM-AIR PARACHUTES 1359

A semidisceteformulaion coupledwith matrix-free iterationswasusedto obtainthe solutions At
evel step,1,129,248couplednon-inear equatons are solved. Turbulenceis incorpoatedinto the
simulationsusirg a simplified verson of the algebraic Baldwin—Lomax° modé,

H=p’lo, (16)
/ :Kn[l —exp(—n+/A+)], (17)

where 14, is the eddyviscosity, ®is the vorticity vecor, K=0-41 andA41T =25-0 areconsants,n is
the normal distan@ to the wall and »t is the samedistan@ expressedin wall units. In our
computationsthis distan@ is measuredfrom the closestnodeon the surface.

Figure 1 shows the chordvise pressuredistribution on the parédoil surfaceaty/b =0-0 (midspan)
for various anglesof attak. The pressureprofile is similar to that of a 2D aerofoil with sucion
preent on the upper surface.Figure 2 showsthe chordvise pressuredistribuion on the parafol
surfacecloseto the parafoiltip for variousanglesof attad. 3D effectsaredistincly presentwith the
sucton decreasé owing to leakageof fluid aroundthe tips from the lower to the upper surface.
Figures3-5 showthe spanwsepressuralistribution on the parafol surfaceat differentchordlenghs
for variousanglesof attadk. The presuredistribution is closeto elliptical, with the effect of parafol
bumps clearly prevdent at the leading edge;the distribuion flattensout progresively towards the
trailing edge.

Figure 6 showsthelift (Cl) anddrag(Cd) coefficients(which arebasedon the freestrea velocity
andthe projectd areaof the parafoil) asfunctions of the anglesof attadk. To accouwnt for theinlet, a
factor’* of 0-5h/c is addedto the drag coefficient. Here h is the inlet height. A typical value of
h /c =0-1 is used.We comparel thesecoefficients with availableexperimenal dataon pardoils and
the calculatedvaluesarein the expededrange We could not carty out a closercomparisorbecause
of differences in the shapeof our pardoil modd andthose for which dataare available. Moreover,
while experimenal datarevealthatmostparafoilsstall at around8°-12°, our modd doesnotindicate
this. We think thatthe reasondor this areasfollows: first, our modd hasaroundel leading edgeas
oppcsedto aninlet; secoml, the predictive capability of the turbulence modd we usediminishesat
high anglesof attad in the regionsof flow sepaation;third, in our computdionswe assumehatthe
parahutesarenot deformable but this is notthe case Figure7 shows the lift-to-dragratio (L /D) asa
function of the angle of attadk. The typical maximum L/D for the ram-ar pardoil aloneis in the
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range3-0-5-0. This is sonmewhathigher than obtainale for typical parafol systens; however our
modé doesnot include line and payloaddrag.

To estabish the convergene of our restts, at anangleof attad of 6°, the pressuralistribuion on
the parafoil surfaceis conparedwith that obtained on a meshwith 594,587 nodesand 575,968
elements Figures8 and9 indicate goodagreenentbetwea the solutionsobtaned onthetwo meshes.
Plates1-3 showthe pressuredistribuion on the parafoil surfacefor variousangkes of attadk.

Transbrmation of the Box to a Parafoil

The inflation of a ram-ar inflated gliding parachutetakesplacein threestages' During the first
stage the canopyexpand with little cell inflation. The canopythen pitchesforwards and air rushes
into the sepaatecells of the gliding wing, causingthemto inflate. As the cels inflate, the parahute
begns to take on the shapeof an aerofoil, causimg lift to be produed while drag decrease. The
parahutethentransitsinto equiibrium glide. Sincewe do not takeinto accountthe pitching motion
in the computationsreportal here only part of the entire processs simulated.
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All the parafoil simulatons reportal in this caseare carried out on the Thinking MachinesCM-5
massively parallel supecompute. In thesecomputationsthe parafoil is allowed to fall underthe
influenceof gravity, inflate andtendtowardsa steadygliding state.Herea partially inflatedbox with
dimensons of chord X span X thickness=48:0 X 33-4 X 12-0 ft* transformsto a gliding pardoil at
a prescribedrate. The box expand by factors of 1-5 and 6-5 alongthe chordand spanrespectivey
and the cross-sectionbecomeshe sane as that of an NACA 0025 aerofol. Figure 10 showsthe
surfacemeshfor the transfornmation of the box to a pardoil. The mes in the middle is interpolaed
from the two othersusing the meshmoving schemedescribedearlier.

Thefinite element meshusedin this simulation consistsof 170,950nodesand161,856hexahelral
elements.The bounday conditionsconskt of specfying thefreesteamvelocity (whichis zerg atthe
inflow bounday, zero normal velocity and zero shearstressat the side boundaies, tracion-free
condtionsat the outflow bounday andno-slip conditionson the pardoil surface At everytime step,
1,304606 coupkd non-linear equatias are solved.

The computationstartsat + =0-0 s, which corresponddgo the steadystatesoluion at the initial
configurationof the box at 10° angke of attackand with a velocity of 112 ft s™*. At =20 s the
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Figure 10. Surfacemeshfor transformabn of box to parafoil
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transbrmafon ends, but the computation continues until ¢t =35 s. The parafoil/payload sysem
mass for this caseis 22,0001b.

Figures11 and12 showthetime histolies of the projectian areaandvelocity respectivéy. Initially
the box hasvery little lift and gains speedowing to gravity. As it expand rapidly at high drop
velocities, very large aeralynamic forces are generagd, leading to the peaksin Figure 13. We
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Figure 11. Transform&on of box to parafoil: time history of projectionarea
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Figure 12. Transformé&ion of box to parafoil: time history of parafoil velocity
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Figure 13. Transformabn of box to parafoil: time history of forcesacting on parafoil
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Figure 14. Transform&on of box to parafoil: time history of angleof attack

obsewe thatthe parafoil attainsan almoststeady4° angleof attad asindicatedby Figure 14. Plate4
shows the presuredistribution on the pardoil surfaceduring the transformation.

7. FLIGHT MECHANICS ANALYSIS

In the flight mechangs simulation the dynamicsof the parachme/payloadsystemis modelledasa
point massdescrited by the differental equatios

v _gpcas(t) , :

E —7 V +g S ’y, (1 8)
d IS

G 8000y 18 cosy, (19)

where ¥ =|V|, V is the velocity, Yis theflight path angle,CdS(t) is the drag areaasa function of
time andClS(t) is thelift areaasa function of time. Thetotal aerodymmicforceactingonthewing is

F =0-50v2{[cas(e)F +[cis@)F . (20)

The trajectory andopeningforce canbe determined by solving theseequationon a compute. The
primarytaskis to modd correctly the evolution of thelift anddragareasasfunctionsof time. Thelift
anddrag area were extractedfrom dataon drop tests9-309and9-310of ram-ar inflated personnel
parachutesandareshownin Figure15. During theinitial inflation of the canopythe airflow is neaty
perpendicula to the chordof the canopyandthe aerofoil is at a 90° angleof attad. This causs the
dragcoeficient of the parachuteto be muchhigherthanduringgliding flight. In addtion, the airflow
is perpendicula to the inlet openngs of the cells. Thus thesecels do not inflate and little lift is
produed.

During canopyinflation the simulationusesa parabolicgrowth curvefor the dragareaasa function
of time. By matchingthe simulaion outpu to measued datg the drag areawas found to havea
maxmum valueof 0-80S, duringthe periodof canopyinflation, whereS, is the canopyarea.The lift
areawas assumedo be zeroduring this time.

The time of inflation for the canopywas determired using the relation

v
K, :tle—S, (21)
(]
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Figure 15. Flight mechanicsanalysisof drop 9-309:lift anddragareasasfunctionsof time

where D, =(S,4/m)’?, ;, is thetime for the dragareato grow from zeroto its full value(0-8S,) and
Vg is the parachutevelocity at line strech. By matchingthe simulaion outpu to the measued data
for peronnel-typegliding parachugswith sliderreefing,K; wasdetermiredto havea valueof 18-0.

Nearthe endof inflation the canopybeginsto pitch forwards,causingthe cells to inflate. As they
inflate, the drag coefficientdropsandlift begnsto be produed. The time betweenthe beginnirg of
cel inflation and the beginnirg of the glide stage,#,, is detemined similarly to #,, excep that
K, =25 and V5 is the velocity at the beginnirg of cell inflation. Onceagainthe simulation usesa
parabolic curvefor thelift areagromh anddragarearedudion asa function of time. During thefinal
stege of inflation the dragandlift areasareassumedo be constantwith Cd, =0-21 andCI, =0-58.

The simulaton was appied to an MC-4 peronnel-ype parachug¢ with the following
chamcterisics:

S, =3700 f*, b=285ft, c=130 ft.

The riggedmasswas360 Ib. A grea dealof detailedinformationwasavaileble on a numter of tests
for this parachute.The simulaion is shownto give goodresultswhencomparedwith measureddata.
Figures 16 and17 showcomparisos betwee calculatd force andmeauredforce on the parahute
for two separat drop teds. The simulation predictsa peakforce almostequalto the measuregeak
force in both cases, but it shows the peakforce occuring before the actualmeasuredforce.
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Figure 16. Flight mechanicsanalysisof drop 9-309: comparisa betweencomputedand measued forces
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Figure 17. Flight mechanicsanalysisof drop 9-310:comparisa betweencomputedand measued forces

Figure 18 shows the simulatd parachute velocity as a function of time. It can be seenthat the
velocity dropsquickly to its steady stategliding value. The flight pathangle asa function of time is
shown in Figure19. Initially the payloadis falling verticaly, but asthe parachu¢ depbys andstarts
to glide, the initial path angledecreasg. Figure 20 shows the altitude as a function of range;this
clearly showsthat the parachuteis enteringinto its steadystae gliding mode. This methodwas
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Figure 18. Flight mechanicsanalysisof drop 9-309: parachutevelocity asfunction of time
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Figure 19. Flight mechanicsanalysisof drop 9-309: parachug flight path angleasfunction of time
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Figure 20. Flight mechanicsanalysisof drop 9-309: parachutealtitude asfunction of range

appied to inflation of a large gliding parachute with sequentialreefirg. After consideable
maripulation of the lift and drag functionsit was possble to obtan openng forces which were
similar to experinentaldata.Howeve, this apprachrequires accesgo flight teg dataandwould not
be uselll for analysisof a designfor which no dataare available. We are currenty working on
improving our finite elementmodd to useit to predictaccuatedragandlift areashistoiiesfor such
situatons.

8. CONCLUDING REMARKS

We demonstatedthe useof two apprachedor the simulaion of parachutedynamics.Oneapproach
empoyed state-of-tle-art finite elementformulationsand masively parallel computing technobgy
for numeical simulaion of flow arourd a pardoil. Compued lift and drag coefficients and L/D

ratios for steady glide were in rea®nable agreement with expeimental values. Preliminary
simulationsof theinflation stagesveremack, with theassumptia thatthetime history of the parafol

surface through the transformation is known. The actual evolution of the surfacewould involve a
complex fluid—stuctureinteracton problemandthis will bethe directon of our futureresearb. The
secoml apprachincorporatedift anddragtime historiesfrom flight data. Thesehistorieswereinput
to theflight medanicsequatias. The useof this methodis limitedto parachutssimilar to thosefor

which dataare available As our computaional modd evolves,we hopeto usea hybrid technique
where flight datacould be obtainal from numericalsimulations,thusredudng expensivedrop tests.
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