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SUMMARY

In the near future, large ram-air parachutes are expected to provide the capability of delivering 21 ton payloads
from altitudes as high as 25,000 ft. In development and test and evaluation of these parachutes the size of the
parachute needed and the deployment stages involved make high-performance computing (HPC) simulations a
desirable alternative to costly airdrop tests. Although computational simulations based on realistic, 3D, time-
dependent models will continue to be a major computational challenge, advanced finite element simulation
techniques recently developed for this purpose and the execution of these techniques on HPC platforms are
significant steps in the direction to meet this challenge. In this paper, two approaches for analysis of the inflation
and gliding of ram-air parachutes are presented. In one of the approaches the point mass flight mechanics
equations are solved with the time-varying drag and lift areas obtained from empirical data. This approach is
limited to parachutes with similar configurations to those for which data are available. The other approach is 3D
finite element computations based on the Navier–Stokes equations governing the airflow around the parachute
canopy and Newton’s law of motion governing the 3D dynamics of the canopy, with the forces acting on the
canopy calculated from the simulated flow field. At the earlier stages of canopy inflation the parachute is
modelled as an expanding box, whereas at the later stages, as it expands, the box transforms to a parafoil and
glides. These finite element computations are carried out on the massively parallel supercomputers CRAY T3D
and Thinking Machines CM-5, typically with millions of coupled, non-linear finite element equations solved
simultaneously at every time step or pseudo-time step of the simulation.# 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Small-scale gliding (ram-air) parachutes, commonly used by the sports parachute community as well
as by the military for personnel drop, have reached a satisfactory level of reliability, aerodynamic
efficiency and controllability. Furthermore, larger-size versions of these parachutes are being
increasingly used for the recovery of large payloads.1 Gliding parachutes coupled with automatic
onboard guidance offer superior controllability and substantial wind penetration when compared with
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round parachutes. Since their introduction in the early 1960s, gliding parachutes have been
redesignedandrefined by thesportscommunity. Thesepersonnel-typeparachutesaresmallbut have
lower wing loading thanthoserequired for largepayloads.

Future milit ary airdrops will requirethe deployment of high-altitudedelivery systemscapableof
delivering up to 21 tons from 25,000ft aboveground level with increased accuracyand reduced
impactvelocity. Gliding parachuteswhich areat least anorderof magnitudelargerandwith a wing
loading threetimes larger thanexistingparachutesarecurrently beingdeveloped.

The deployment andcontrol of suchlargeparachutesposemanychallenging technicalproblems.
In thedesignof anyparachutesystemit is importantto predictopening forcesfor choiceof materials.
Only a limit ed databaseis available for large gliding parachutes; therefore methodsfor inflation
analysis basedon first principlesmay be useful in design.

In this paper,two approaches for openingforce analysisarepresented.2,3 Oneof theapproaches is
anextension of theclassicalPflanzmethod.4–6 Herethe lift anddragareas areassumedto vary with
time and the point mass flight mechanics equations are solved as a function of time to yield the
opening forces.This methodrequires empirical datain orderto modelthe temporal evolutionof lift
anddrag,so its predictive capabilities arerestrictedto parachutessimilar to those for which dataare
available.

The secondapproach focuses on advancedfinite element flow simulation techniques to use
realistic, 3D computer modelsrepresentingthe parachute system and its deployment stages.The
aerodynamics of ram-air parachutes involves a large number of complex phenomena. The
deployment, extensionand evolution to the gliding stage involve rapidly changinggeometries,
unsteadyand turbulentflow behaviour andnon-linear interactionsbetween the parachutestructure,
aerodynamic forcesand the payload.Even the gliding stage involves deformationsof the canopy,
changes in the orientation of the parachuteandchanges in relativemotion between the canopyand
thepayload.All these behaviours require3D simulationtechniquescapable of handlingtime-varying
computationaldomainswith formulationswhich are robust andaccurate.Implementationson HPC
platforms with sufficient computationalspeedandmemoryarenecessary.

At this phaseof thesimulationsthetime-variationof thegeometry of thecanopyis assumedto be
given, approximated using the initial and final configurations and dimensions of the canopy.
However, the dynamicsof the canopy, i.e. its translational and rotational motion, still needsto be
determined as part of the overall solution. This motion depends on the weight and motion of the
payloadandalsoon theaerodynamic forcesgeneratedby theunsteadyflow field. Theairflow around
the parachute canopyis governedby the 3D Navier–Stokesequations of incompressible flow with
time-dependentspatial domains. The 3D dynamicsof the canopyis governedby Newton’s law of
motion, with the forcesactingon the canopycalculatedfrom the simulatedflow field. At the initial
stage of canopyinflation the parachuteis modelled asa falling, expanding box, whereasat the later
stagesthe box transformsto an expanding, gliding parafoil. It is importantto notethat to accurately
resolve theflow around suchcomplex 3D geometries,it is essential to usevery refined computational
grids leading to very large systems of non-linear equations. The availability of advanced HPC
platforms andefficient implementation techniquesmakesthese computationsfeasible.7,8

To handle the time-variant domainsencounteredin simulations of parachutesystems,we employ
the deformable-spatial-domain=stabilized-space–time (DSD=SST)finite element formulation. In this
formulationthefinite elementinterpolationpolynomialsarefunctionsof bothspaceandtime andthe
stabilized variational formulationof the problemis written over the associated space–time domain.
This methodwasintroducedby Tezduyar et al.9,10 to solveincompressibleflow problems involving
free surfaces,two-liquid interfacesandfluid–structureandfluid–particle interactions.Later, similar
formulationsweredevelopedfor compressible gasflows11 andcompressible liquid flows.12
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In this paperwe discussthe steadyglide aerodynamics and inflation aerodynamics of ram-air
parafoils. The computationsreported are performedon the Thinking Machines CM-5 and CRAY
T3D massively parallel computers. On theCM-5 we useanSIMD or data-parallel implementation13

andon the T3D we usea message-passingparadigmbasedon PVM.14

In thesecomputations,updating the finite element meshas the spatialdomainchanges its shape
with time becomesamajorissue.Thereareseveralwaysof managing this; thedetailed description of
these approachestogetherwith their advantagesanddisadvantagescanbe found in Reference15. In
our studiesthemotion of eachfinite elementgrid point is prescribedexplicitly. This is accomplished
with no remeshing (i.e. without generatinga newsetof nodesandelements).With this approachthe
connectivity of the meshremainsthe same throughout the simulation. As a result, both the mesh
generation andparallelization set-upcostsarereducedto a minimum. This is desirable for practical
simulationswith hundredsof time steps.

The organization of this paperis asfollows. The governing equations arereviewed in Section2.
The stabilizedfinite element formulation is presentedin Section3. In Section4 we present themesh
moving scheme usedin our simulation of the inflation stage.Parallel implementation aspectsare
briefly coveredin Section5. Thesteadyglide andinflationsimulationscompriseSection6. Theflight
mechanicssimulationsarepresentedin Section7.

2. GOVERNING EQUATIONS

LetOt � R
nsd and(0, T) bethespatialandtemporal domains respectively,wherensd is thenumberof

spacedimensions,andlet Gt denotetheboundaryof Ot. Thesubscript t implies thetime dependence
of the spatial domain.The spatial and temporalcoordinates are denotedby x � �x; y; z� 2 Ot and
t 2 �0;T�. The governingequations for the flow field computations arethe Navier–Stokesequations
of incompressible flows,

r
@u
@t
� u ? HHu� f

� �

ÿHH ? s � 0 on Ot; �1�

HH ? u � 0 on Ot; �2�

wherer is the(constant) densityandu is thevelocity vector.Heref is theexternal forceconsisting of
gravity. For the Newtonian fluids under consideration the stresstensor for a fluid with dynamic
viscosity m is definedas

s�u; p� � ÿpI� 2me�u�; �3�

where p is the mechanicalpressureande�u� is the strain rate tensorgiven by

e�u� � 1
2 �HHu� �HHu�T�: �4�

Both Dirichlet- andNeumann-typeboundaryconditionsareaccounted for, representedas

u � g on �Gt�g; n ? s � h on �Gt�h; �5�

where �Gt�g and �Gt�h are complementarysubsets of the boundaryGt. The initial condition on the
velocity is specified as

u�x; 0� � u0 on O0; �6�

where u0 is divergence-free.
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The parafoil is treated asa solid body with known geometric time variation. The Navier–Stokes
equations are coupled together with Newton’s laws of motion for the parafoil system. Purely
translationalmotion is considered. Theseequations are

F�W � �W=g�a; �7�

where F is theaerodynamicforceacting on theparafoil andW is thegravitational forceacting on the
parafoil=payloadsystem.Here a is the linearaccelerationof themass centreof theparafoil=payload
system.

3. DEFORMING SPATIAL DOMAIN=STABILIZED SPACE–TIME (DSD=SST)
FORMULATION

In order to construct the finite element function spacesfor the space–time method,we partition the
time interval (0, T) into subintervals In � �tn; tn�1�, wheretn and tn�1 belongto an ordered seriesof
time levels0 � t0 < t1 < � � � < tN � T . Let On � Otn

andGn � Gtn
. We definethe space–time slab

Qn asthedomainenclosedby thesurfacesOn;On�1 andPn, where Pn is thesurfacedescribedby the
boundaryGt as t traversesIn. As is the casewith Gt, the surfacePn is decomposed into �Pn�g and
�Pn�h with respectto thetypeof boundary condition(Dirichlet or Neumann)beingimposed.For each
space–timeslabwe definethecorrespondingfinite element functionspaces�sh

u�n; �v
h
u�n; �s

h
p�n and

�v
h
p�n. Over the elementdomainthis spaceis formedby using first-orderpolynomials in spaceand

time. Globally the interpolation functions arecontinuous in spacebut discontinuousin time.
The stabilized space–time formulation for deforming domainsis then written as follows: given
�uh
�
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This processis appliedsequentially to all thespace–timeslabsQ1;Q2; . . . ;QNÿ1. In thevariational
formulationsgiven by equation (8), the following notation is used:

L�w; q� � r
@w
@t
� u ? HHw

� �

� HHqÿ 2mHH ? e�w�; �9�

�uh�
�

n � lim
e!0

u�tn � e�; �10�

�

Qn

�. . .�dQ �

�

In

�

On

�. . .�dOdt; �11�

�

Pn

�. . .�dP �

�
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�

Gn

�. . .�dGdt: �12�
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The computationsstart with

�uh
�
ÿ

0 � u0: �13�

Remarks

1. In thevariational formulation givenby equation (8), thefirst threetermsandtheright-handside
constitutethe Galerkin formulationof the problem.

2. The first seriesof element-level integralsin equation (8) consists of the least squaresterms
basedon the momentumequation. Heret is definedas

t �
2kuh
k

h

� �2

�

4n
h2

� �2
" #

ÿ1=2

; �14�

whereh is the elementlength andn � m=r.
3. Thesecond seriesof element-level integrals is addedto the formulation for numerical stability

at high Reynoldsnumbers.Thesearethe least squarestermsbasedon the continuity equation.
The coefficient d is definedas

d �
h

2
kuh
kz; �15�

where

z �
Reu=3; Reu 4 3;
1; Reu > 3

�

andReu is the cell Reynoldsnumber.
4. Both stabilization termsare weightedresiduals and therefore maintain the consistency of the

formulation.
5. Thesixth termenforces, weakly, thecontinuity of thevelocity field acrossthespace–timeslabs.

4. MESH MOVING SCHEMES

In our finite element computations we consider two categoriesof meshmoving schemes:automatic
schemesandspecialschemes.

In automatic schemesthe mesh displacements are prescribed on the boundaries and the
displacements in the interior aredetermined by solving the equations of elasticity for the domain.15

This schemeis very general andparticularly suitable for unstructuredmeshes;however, it involves
the additional cost of solving for the node displacements.Furthermore, when the meshbecomes
excessively distorted, remeshingneedsto be undertaken. This involvesgenerating a new meshand
projectingthesolution from theold meshto thenewmesh.Projectionandmeshgeneration aretime-
consuming andposebottlenecks in the parallel implementation.

In specialmesh-moving schemes, which arenormally designedfor specificproblems, the motion
of eachnodeis prescribedexplicitly. In our computations we utilize sucha schemetogether with a
specially designed algebraic mesh generator. In its initial state prior to inflation the parafoil is
assumed to have the shapeof a box. In its final state it is fully inflated. The mesh connectivity
between thetwo statesremain unchanged.The time for inflation is estimatedfrom droptest data.The
inflation processis modelledasa smoothtransformation between the two states.As a resultof this,
the meshgenerator is usedto generate meshescorresponding to the two end statesonly, and at a
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given instant during inflation the mesh is interpolated from thesetwo states with no need for
remeshing. At this time the pitching motion of the parafoil is constrained.

It is important to note that the true deformation history would come out of the solution of a
complex fluid–structureinteraction problem which we plan to consider in the future.

5. PARALLEL IMPLEMENTATION

We briefly describe heretheparallel implementationof thefinite element algorithmson theThinking
MachinesCM-5 andCRAY T3D supercomputers.

The finite element formulationsdescribed in earlier sections give rise to very large systemsof
couplednon-linearequationswhich requiretheuseof iterative strategieswith updatetechniquessuch
as GMRES16 for their solution. To further reduce the memory requirements, we use matrix-free
iterations andthuseliminate the needto storeelement-level matrices.

The bulk of the computing cost is taken up by two tasks.

1. Computation of element-level quantities.
2. Communication of data across processorswhile forming the global equation systems. This

involves the data transfer modes Gather (global=node! local=element) and Scatter
(global=node local=element).

Of thesetwo, the first task is fully parallel in the sensethat all operationsfor eachelement are
entirely local to aprocessor. Thesecond step canbeabottleneckandthuscarefulconsiderationhasto
be given to the use and distribution of data structures to maximize locality17,18 and minimize
communication.

On theCM-5 we usea data-parallel programmingparadigm. Thetaskof synchronizingprocessing
nodesis internal to themachine.Themeshis partitionedandcommunication tracesarecomputed and
storedthrough calls to routines in the ConnectionMachine Scientific Software Library (CMSSL).
The interestedreader is referredto References 7 and19 for further details.

On the T3D we usea message-passingparadigmbuilt upon the CRAY extension of the Parallel
Virtual Machine (PVM) software. Here synchronization betweenprocessors is realized explicitly
throughPVM barriersplacedaccordingly in thecode.Gatherandscatter operationsareperformedby
routinesprogrammed to offer the samefunctionality availableon the CM-5.

6. FINITE ELEMENT SIMULATIONS

Steady statesimulationsat Re � 107

Al l the parafoil simulationsreported in this Sectionarecarriedout on the CRAY T3D massively
parallel supercomputer.The aerodynamiccharacteristicsof a parafoil arethecrucialquantitieswhich
determine its performance. We havecarried out steadystatesimulationsat variousanglesof attack
(a).

The meshfor the parafoil, with a Clark-Y cross-sectionwith a rounded leadingedge,consists of
291,437 nodesand279,888hexahedral elements.The aspectratio of theparafoil is 3�0 andthe ratio
of line length to span0�6. The x-axis is in the chordwise direction and the y-axis along the span.
Boundaryconditionsconsistof no-slip conditionson theparafoil surface, specification of thevelocity
at the inflow boundary, zero shearstressand zero normal velocities at the side boundaries and
traction-freeconditionsat theoutflowboundary. In thesesimulations,b refersto theparafoilspanand
c to the chord length.
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A semidiscreteformulation coupledwith matrix-free iterationswasusedto obtainthesolutions.At
every step,1,129,248couplednon-linear equations are solved. Turbulenceis incorporatedinto the
simulationsusing a simplified version of the algebraic Baldwin–Lomax20 model,

mt � rl2
jvj; �16�

l � kn�1ÿ exp�ÿn�=A���; �17�

where mt is the eddyviscosity,v is the vorticity vector, k � 0�41 andA� � 25�0 areconstants,n is
the normal distance to the wall and n� is the same distance expressed in wall units. In our
computationsthis distance is measuredfrom the closestnodeon the surface.

Figure 1 shows thechordwisepressuredistribution on theparafoil surfaceat y=b � 0�0 (midspan)
for various anglesof attack. The pressureprofile is similar to that of a 2D aerofoil with suction
present on the upper surface.Figure 2 showsthe chordwise pressuredistribution on the parafoil
surfacecloseto theparafoil tip for variousanglesof attack. 3D effectsaredistinctly present,with the
suction decreased owing to leakageof fluid aroundthe tips from the lower to the uppersurface.
Figures3–5 showthespanwisepressuredistributionon theparafoil surfaceat differentchordlengths
for variousanglesof attack. Thepressuredistribution is closeto elliptical, with theeffectof parafoil
bumps clearly prevalent at the leadingedge;the distribution flattensout progressively towards the
trailing edge.

Figure 6 showsthe lift (Cl) anddrag(Cd) coefficients(which arebasedon thefreestream velocity
andtheprojectedareaof theparafoil) asfunctionsof theanglesof attack. To account for the inlet, a
factor21 of 0�5h=c is addedto the drag coefficient. Here h is the inlet height. A typical value of
h=c � 0�1 is used.We compared thesecoefficientswith availableexperimental dataon parafoils and
thecalculatedvaluesarein theexpected range. We couldnot carry out a closercomparisonbecause
of differences in the shapeof our parafoil model andthose for which dataareavailable. Moreover,
while experimental datarevealthatmostparafoilsstall at around8�–12�, our model doesnot indicate
this. We think that the reasonsfor this areasfollows: first, our model hasa rounded leading edgeas
opposedto an inlet; second, the predictivecapabilityof the turbulencemodel we usediminishesat
high anglesof attack in theregionsof flow separation; third, in our computationswe assumethat the
parachutesarenot deformable,but this is not thecase.Figure7 shows thelift-to-dragratio �L=D� asa
function of the angleof attack. The typical maximum L=D for the ram-air parafoil aloneis in the

Figure1. Steadystatesimulations at Re � 107 for variousanglesof attack:chordwisepressuredistributionon parafoilsurface
at y=b � 0�00 (midspan)
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Figure2. Steadystatesimulations at Re � 107 for variousanglesof attack:chordwisepressuredistributionon parafoilsurface
at y=b � 0�45

Figure3. Steadystatesimulationsat Re � 107 for variousanglesof attack:spanwisepressuredistributiononparafoilsurfaceat
x=c � 0�02

Figure4. Steadystatesimulationsat Re � 107 for variousanglesof attack:spanwisepressuredistributiononparafoilsurfaceat
x=c � 0�25
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range3�0–5�0. This is somewhathigher than obtainable for typical parafoil systems; however, our
model doesnot include line andpayloaddrag.

To establish theconvergence of our results, at anangleof attack of 6�, thepressuredistribution on
the parafoil surfaceis comparedwith that obtained on a meshwith 594,587nodesand 575,968
elements.Figures8 and9 indicategoodagreementbetween thesolutionsobtainedonthetwo meshes.
Plates1–3 showthe pressuredistribution on the parafoil surfacefor variousanglesof attack.

Transformationof the Box to a Parafoil

The inflation of a ram-air inflatedgliding parachutetakesplacein threestages.4 During the first
stage the canopyexpands with little cell inflation. The canopythenpitchesforwards andair rushes
into theseparatecells of thegliding wing, causingthemto inflate.As thecells inflate, theparachute
begins to take on the shapeof an aerofoil, causing lift to be produced while drag decreases. The
parachutethentransitsinto equilibrium glide. Sincewe do not takeinto accountthepitchingmotion
in the computationsreported here, only part of the entireprocessis simulated.

Figure5. Steadystatesimulationsat Re � 107 for variousanglesof attack:spanwisepressuredistributiononparafoilsurfaceat
x=c � 0�50

Figure6. Steadystatesimulations at Re � 107: dragandlift coefficients asfunctions of angleof attack
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Figure 8. Steady state simulations at Re � 107 for a � 6�: chordwise pressuredistribution on parafoil surface at
y=b � 0�00. Comparisonof solutionson mesh1 (291,437nodes)andmesh2 (594,587nodes)

Figure 9. Steady state simulations at Re � 107 for a � 6�: spanwise pressuredistribution on parafoil surface at
x=c � 0�25. Comparisonsolutionson mesh1 (291,437nodes)andmesh2 (594,587nodes)

Figure7. Steadystatesimulations at Re � 107: lift =drag(L=D) ratio asfunction of angleof attack
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All the parafoil simulations reported in this casearecarried out on the Thinking MachinesCM-5
massively parallel supercomputer. In thesecomputationsthe parafoil is allowed to fall under the
influenceof gravity, inflateandtendtowardsa steadygliding state.Herea partially inflatedbox with
dimensionsof chord6 span6 thickness� 48�06 33�4612�0 ft3 transformsto a gliding parafoil at
a prescribedrate.The box expands by factors of 1�5 and6�5 alongthe chordandspanrespectively
and the cross-sectionbecomesthe same as that of an NACA 0025 aerofoil. Figure 10 showsthe
surfacemeshfor the transformation of the box to a parafoil. The mesh in the middle is interpolated
from the two othersusing the meshmoving schemedescribedearlier.

Thefinite element meshusedin this simulationconsistsof 170,950nodesand161,856hexahedral
elements.Theboundary conditionsconsistof specifying thefreestreamvelocity (which is zero) at the
inflow boundary, zero normal velocity and zero shearstressat the side boundaries, traction-free
conditionsat theoutflow boundary andno-slipconditionson theparafoil surface. At everytime step,
1,304,606coupled non-linearequations aresolved.

The computationstartsat t � 0�0 s, which correspondsto the steadystatesolution at the initial
configurationof the box at 10� angle of attackand with a velocity of 112 ft s71. At t � 2�0 s the

Figure10. Surfacemeshfor transformation of box to parafoil
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transformation ends,but the computation continues until t � 3�5 s. The parafoil=payload system
mass for this caseis 22,000lb.

Figures11 and12 showthetime historiesof theprojection areaandvelocity respectively. Initially
the box has very little lift and gains speedowing to gravity. As it expands rapidly at high drop
velocities, very large aerodynamic forces are generated, leading to the peaksin Figure 13. We

Figure11. Transformation of box to parafoil: time history of projectionarea

Figure12. Transformation of box to parafoil: time history of parafoil velocity

Figure13. Transformation of box to parafoil: time history of forcesactingon parafoil
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observe that theparafoilattainsanalmoststeady4� angleof attack asindicatedby Figure 14.Plate4
shows the pressuredistribution on the parafoil surfaceduring the transformation.

7. FLIGHT MECHANICS ANALYSIS

In the flight mechanics simulation the dynamicsof the parachute=payloadsystemis modelledasa
point massdescribed by the differential equations

dV

dt
�

grCdS�t�

2W
V 2
� g sin g; �18�

dg
dt
�

grClS�t�

2W
V �

g

V
cos g; �19�

where V � jVj;V is the velocity, g is the flight pathangle,CdS�t� is the dragareaasa function of
time andClS�t� is theli ft areaasa functionof time.Thetotal aerodynamicforceactingon thewing is

F � 0�5rV 2
f�CdS�t��2 � �ClS�t��2g0�5: �20�

The trajectory andopeningforcecanbedeterminedby solving theseequationson a computer. The
primarytaskis to model correctly theevolution of thelift anddragareasasfunctionsof time.Thelift
anddragareas wereextractedfrom dataon drop tests9-309and9-310of ram-air inflatedpersonnel
parachutesandareshownin Figure15.During the initial inflation of thecanopytheairflow is nearly
perpendicular to thechordof thecanopyandthe aerofoil is at a 90� angleof attack. This causes the
dragcoefficient of theparachuteto bemuchhigherthanduringgliding flight. In addition, theairflow
is perpendicular to the inlet openings of the cells. Thus thesecells do not inflate and little lift is
produced.

Duringcanopyinflation thesimulationusesaparabolicgrowthcurvefor thedragareaasa function
of time. By matchingthe simulation output to measured data, the drag areawas found to havea
maximum valueof 0�80So duringtheperiodof canopyinflation, whereSo is thecanopyarea.The lift
areawasassumedto be zeroduring this time.

The time of inflation for the canopywasdetermined using the relation

K1 � tf1
VS

Do
; �21�

Figure14. Transformation of box to parafoil: time history of angleof attack
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where Do � �So4=p�0�5; tf1 is thetime for thedragareato grow from zeroto its full value(0�8S0) and
VS is the parachutevelocity at line stretch. By matchingthe simulation output to the measured data
for personnel-typegliding parachuteswith slider reefing,K1 wasdeterminedto havea valueof 18�0.

Nearthe endof inflation the canopybegins to pitch forwards,causingthe cells to inflate.As they
inflate, the dragcoefficient dropsandlift begins to be produced.The time betweenthe beginning of
cell inflation and the beginning of the glide stage,tf2, is determined similarly to tf1, except that
K1 � 2�5 andVS is the velocity at the beginning of cell inflation. Onceagainthe simulation usesa
parabolic curvefor thelift areagrowth anddragareareduction asa function of time.During thefinal
stageof inflation thedragandlift areasareassumedto beconstant,with Cdo � 0�21 andClo � 0�58.

The simulation was applied to an MC-4 personnel-type parachute with the following
characteristics:

So � 370�0 ft2; b � 28�5 ft; c � 13�0 ft:

The riggedmasswas360 lb. A great dealof detailedinformationwasavailable on a number of tests
for this parachute.Thesimulation is shownto give goodresultswhencomparedwith measureddata.
Figures16 and17 showcomparisons between calculated force andmeasuredforceon theparachute
for two separate drop tests. The simulation predictsa peakforce almostequalto the measuredpeak
force in both cases, but it shows the peakforce occurring before the actualmeasuredforce.

Figure16. Flight mechanicsanalysisof drop 9-309:comparison betweencomputedandmeasured forces

Figure15. Flight mechanicsanalysisof drop 9-309: lift anddragareasasfunctionsof time
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Figure 18 shows the simulated parachutevelocity as a function of time. It can be seenthat the
velocity dropsquickly to its steadystategliding value.The flight pathangle asa function of time is
shown in Figure19. Initially thepayloadis falling vertically, but astheparachute deploysandstarts
to glide, the initial path angledecreases. Figure 20 shows the altitude as a function of range;this
clearly showsthat the parachute is enteringinto its steadystate gliding mode.This methodwas

Figure17. Flight mechanicsanalysisof drop 9-310:comparison betweencomputedandmeasured forces

Figure18. Flight mechanicsanalysisof drop 9-309:parachutevelocity asfunction of time

Figure19. Flight mechanicsanalysisof drop 9-309:parachute flight pathangleasfunction of time
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applied to inflation of a large gliding parachute with sequential reefing. After considerable
manipulation of the lift and drag functions it was possible to obtain opening forces which were
similar to experimentaldata.However, this approachrequires accessto flight test dataandwould not
be useful for analysisof a designfor which no data are available. We are currently working on
improving our finite elementmodel to useit to predictaccuratedragandlift areashistories for such
situations.

8. CONCLUDING REMARKS

We demonstratedtheuseof two approachesfor thesimulation of parachutedynamics.Oneapproach
employed state-of-the-art finite elementformulationsandmassively parallel computing technology
for numerical simulation of flow around a parafoil. Computed lift and drag coefficients and L=D
ratios for steady glide were in reasonable agreement with experimental values. Preliminary
simulationsof theinflationstagesweremade,with theassumption thatthetime history of theparafoil
surfacethrough the transformation is known. The actual evolution of the surfacewould involve a
complex fluid–structureinteraction problemandthis will bethedirection of our futureresearch. The
second approachincorporatedlift anddragtime historiesfrom flight data.Thesehistorieswereinput
to theflight mechanicsequations.Theuseof this methodis limit edto parachutessimilar to thosefor
which dataare available. As our computational model evolves,we hopeto usea hybrid technique
where flight datacould be obtained from numericalsimulations,thusreducing expensivedrop tests.
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